Subscripts

CD	carbon dioxide
D	<i>n-</i> decane
HD	n-hexadecane

Literature Cited

(1) Hayduk, W., Watter, E. B., Simpson, P., J. Chem. Eng. Data, 17, 59 (1972).

- (2) Kulkarni, A. A., Zarah, B. Y., Luks, K. D., Kohn, J. P., J. Chem. Eng. Data, 19, 92 (1974).
- (3) Reamer, H. H., Sage, B. H., J. Chem. Eng. Data, 8, 508 (1963).
 (4) Schneider, G., Alwani, Z., Heim, W., Horvath, E., Franck, E. U., Chemie-Ing.-Techn., 39, 649 (1967).
 (5) Simnick, J. J., Lawson, C. C., Lin, H. M., Chao, K.-C., AIChE J., 23, 469
- (1977). (6) Tremper, K. K., Prausnitz, J. M., J. Chem. Eng. Data, 21, 295 (1976).

Received from review July 2, 1979. Accepted November 15, 1979. Financial support for this work was provided by the Electric Power Research Institute, Grant RP-367.

Isothermal Compressibility of Cyclohexane + n-Hexane, Cyclohexane + n-Heptane, Cyclohexane + n-Octane, and Cyclohexane + n-Nonane

E. Alcart, * G. Tardajos, and M. Díaz Peña

Departamento de Química Fisica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 3, Spain

The isothermal compressibility of cyclohexane + *n*-hexane, cyclohexane + *n*-heptane, cyclohexane + *n*-octane, and cyclohexane + *n*-nonane binary mixtures has been determined at 298.15, 308.15, 318.15, and 333.15 K. The "excess" function, $-V^{-1}(\partial V^{E}/\partial p)_{7}$, is negative for cyclohexane + n-hexane and cyclohexane + n-heptane systems, though the last one deviates only slightly from ideality. The "excess" function for the cyclohexane + n-nonane system is positive, while the cyclohexane + *n*-octane system is an ideal one. At 0.5 mole fraction the "excess" function absolute value of the cyclohexane + n-hexane system shows a maximum, which increases with temperature.

1. Introduction

Previous papers reported isothermal compressibility,¹ κ_{T} , molar excess enthalpy,^{2,3} H^E, and molar excess volume,^{4,5} V^E, for binary systems consisting of benzene + n-alkanes. In order to study the effect of aromaticity on certain excess functions, we determined compressibilities of similar systems containing cyclohexane instead of benzene. For these systems, both H^E and V^{E} were determined before.^{6,7} We are in the process of finishing up compressibility measurements for the remaining members of the sequence. Thus we hope to make available a complete set of measurements on a regular sequence of binary systems which should prove useful for testing theoretical studies.

2. Experimental Section

Isothermal compressibility is usually defined as

ĸ

$$T = - V^{-1} (\partial V / \partial p)_T$$
(1)

and the experimental technique used here for its determination was a piezometric method fully described before.8-10 This procedure yields an error of less than 0.5%.

Table I gives information on the source and manufacturer reported purity of the chemicals. All chemicals were treated with sodium wire to eliminate moisture. The density of all substances was measured at every temperature. In our work the volume of any liquid on which compressibility was determined was always obtained through its mass and density. Our results

at 298.15 K compare with those in the literature¹¹ reported in Table I. The procedure followed for mercury purification is given elsewhere.10

According to the relationship

$$V = x_1 V_1 + x_2 V_2 + V^{\mathsf{E}}$$
(2)

in order to calculate the liquid volume, one needs to know the excess volume. This one at 298.15 K for cyclohexane + nhexane was determined by various authors¹²⁻¹⁴ and their results agree with these of Sánchez Pajares and Núñez Delgado,⁷ who also measured V^{E} for cyclohexane + even *n*-alkanes at 298.15 K. The alkane C number of atoms went from 6 to 16. Those V^{E} values were used by us. Due to the small value of V^{E} , the correction applied to κ_{T} for the cyclohexane + *n*-nonane system (the one with the highest V^{E}) is less than 0.2%. On account of the smooth dependence of V^{E} on alkane chain length, we have obtained the V^{E} values for the odd alkane systems by interpolation. Some authors report a V^E decrease with temperature¹² for the cyclohexane + *n*-hexane system while others claim no change. In either case we are talking of less than 0.1% of the κ_T value. Therefore we have taken V^E to be temperature independent.

3. Results and Discussion

Isothermal compressibility of cyclohexane + n-hexane, cyclohexane + n-heptane, cyclohexane + n-octane, and cyclohexane + *n*-nonane systems were determined at negligible pressure and at 298.15, 308.15, 318.15, and 333.15 K.

Measurements on pure substances were run twice. Our results for cyclohexane are given in Table II, where literature data are included for comparison sake. A comparison of the experimental results for the remaining pure substances, nhexane, *n*-heptane, *n*-octane, and *n*-nonane, with those in the literature is skipped here, as it was already made by us previously.10

Experimental κ_{τ} results at various mole fractions are given in Table III.

The κ_{T} values as a function of cyclohexane mole fraction, x_{1} , were fitted to a polynomial of the type

$$\kappa_{\rm T}/{\rm TPa^{-1}} = \sum_{i=0}^{N} A_i x_1^{i}$$
 (3)

where accordingly the pure substance κ_{T} value was assigned

Table I. Experimental Densities ρ at Various Temperatures and Comparison with Literature Data at 298.15 K and Mole Fraction Purity (x) of the Liquids

			ρ/g·cm ⁻³				
compd				exptl			
	source	$10^{2}x$	298.15 K	308.15 K	318.15 K	333.15 K	298.15 K
cyclohexane	Merck z.a.	≥99.5	0.773 92	0.764 51	0.754 85	0.740 36	0.773 89
<i>n</i> -hexane	Fluka puriss	≥99.5	0.65513	0.646 07	0.636 79	0.622 21	0.654 81
<i>n</i> -heptane	Fluka puriss	≥99.5	0.679 81	0.671 21	0.662 61	0.649 31	0.679 51
n-octane	Merck z.s.	≥98	0.698 61	0.690 54	0.682 32	0.669 38	0.698 49
<i>n</i> -nonane	Fluka purum	≥99	0.714 35	0.706 57	0.698 47	0.686 33	0.713 81

^a Reference 11.

 Table II.
 Comparison of Cyclohexane Values

 with Literature Data
 Comparison of Cyclohexane Values

		$\kappa_{\rm T}/{\rm TPa^{-1}}$
T/K	this work	literature
298.15	1120	1139, ^a 1135, ^b 1125, ^c 1130, ^d 1110, ^e 1130 ^f
308.15	1219	$1236^{a}_{,a} 1214^{b}_{,b} 1202^{e}_{,a}$
318.15	1331	1342, ^a 1342, ^b 1315 ^e
333.15	1520	1538. ^a 1520. ^b 1488 ^e

^a Interpolated from P, V measurements.¹⁵ ^b From P, V measurements.⁹ ^c From ultracentrifugal measurements.¹⁶ ^d From P, V measurements.¹⁷ ^e From P, V measurements.⁸ ^f From ultrasonic velocity measurements.¹⁸

Figure 1. Isothermal compressibility $\kappa_{\rm T}$ against cyclohexane mole fraction x_1 for the cyclohexane + *n*-hexane system.

double weight. The fit coefficients, A_i , and their standard deviation, σ , are given in Table IV.

On Figures 1-4 κ_T values vs. x_1 were plotted. The solid line

Figure 2. Isothermal compressibility κ_{T} against cyclohexane mole fraction x_{1} for the cyclohexane + *n*-heptane system.

Figure 3. Isothermal compressibility κ_{T} against cyclohexane mole fraction x_{1} for the cyclohexane + *n*-octane system.

curve corresponds to eq 3.

Differentiation of eq 2 with respect to pressure gives $(\partial V^{E}/\partial p)_{T} = (\partial V/\partial p)_{T} - x_{1}(\partial V_{1}/\partial p)_{T} - x_{2}(\partial V_{2}/\partial p)_{T}$ (4)

Table III.	Experimental Values of Isothermal Compressibility κ_{T} , – V	$V^{-1}(\partial V^{\mathbf{E}}/\partial p)_{T}$, and $(\partial V^{\mathbf{E}}/\partial p)_{T}$ at Negligible Pre	essures

x1	к _Т /ТРа ⁻¹	κ _T ^E /TPa ⁻¹	$\frac{10^{-3}(\partial V^{\mathbf{E}}/\partial p)_{\mathbf{T}}}{\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}\cdot\mathrm{TPa}^{-1}}$	к _Т /ТРа ⁻¹	$\kappa_{\rm T}^{\rm E}/{\rm TPa^{-1}}$	$\frac{10^{-3} (\partial V^{\mathbf{E}} / \partial p)_{T}}{\mathrm{cm}^{3} \cdot \mathrm{mol}^{-1} \cdot \mathrm{TPa}^{-1}}$	
		Cyclohe T = 298.15 K	xane (1) + n -Hexane	(2)	T = 308.15 K		
0 0.1818 0.2397 0.2935 0.3767 0.4630 0.5006 0.5803 0.6181 0.6819 0.7922 0.8613 1	1672 1569 1538 1503 1455 1406 1388 1343 1329 1295 1231 1194 1120	$\begin{array}{c} 0 \\ -17 \\ -20 \\ -27 \\ -33 \\ -35 \\ -33 \\ -34 \\ -26 \\ -23 \\ -21 \\ -15 \\ 0 \end{array}$	0 1.8 2.5 3.4 4.0 4.2 4.0 4.0 3.0 2.6 2.3 1.7 0	1844 1726 1685 1650 1602 1543 1524 1471 1449 1412 1341 1301 1219	$\begin{array}{c} 0 \\ -20 \\ -29 \\ -33 \\ -33 \\ -40 \\ -35 \\ -38 \\ -36 \\ -31 \\ -27 \\ -19 \\ 0 \end{array}$	0 2.6 3.7 4.2 4.3 4.9 4.3 4.9 4.3 4.6 4.2 3.7 3.1 2.1 0	
0		T = 318.15 K		2294	T = 333.15 K		
0.1818 0.2397 0.2935 0.3767 0.4630 0.5006 0.5803 0.6181 0.6819 0.7922 0.8613 1	1902 1852 1811 1756 1691 1667 1606 1579 1542 1464 1420 1331	$ \begin{array}{r} -22 \\ -35 \\ -42 \\ -43 \\ -49 \\ -47 \\ -52 \\ -51 \\ -41 \\ -35 \\ -25 \\ 0 \\ \end{array} $	2.9 4.6 5.4 5.4 6.1 5.8 6.3 6.2 4.9 4.1 2.9 0	2384 2212 2163 2102 2026 1956 1924 1856 1822 1765 1676 1676 1671 1520	$\begin{array}{c} -38 \\ -53 \\ -61 \\ -70 \\ -69 \\ -68 \\ -67 \\ -67 \\ -66 \\ -52 \\ -39 \\ 0 \end{array}$	5.1 7.0 8.1 9.1 8.7 8.6 8.3 8.3 8.3 8.3 8.0 6.2 4.6 0	
		Cyclohex T = 298.15 K	(1) + <i>n</i> -Heptane	(2)	T = 308.15 K		
$\begin{array}{c} 0 \\ 0.1345 \\ 0.1699 \\ 0.2209 \\ 0.2525 \\ 0.3043 \\ 0.3421 \\ 0.3732 \\ 0.4169 \\ 0.4222 \\ 0.4780 \\ 0.5745 \\ 0.6665 \\ 0.7903 \\ 0.8757 \\ 1 \end{array}$	1440 1401 1393 1379 1365 1351 1345 1324 1321 1308 1275 1243 1202 1168 1120	$ \begin{array}{c} 0 \\ -5 \\ -4 \\ -9 \\ -9 \\ -9 \\ -4 \\ -3 \\ -4 \\ -1 \\ -2 \\ -3 \\ 0 \\ -2 \\ 0 \\ T = 318.15 \text{ K} \end{array} $	0 0.7 0.6 0.6 1.3 1.2 0.6 0.4 0.5 0.1 0.2 0.4 0.0 0.2 0	1569 1529 1513 1497 1487 1471 1463 1449 1436 1439 1413 1390 1354 1311 1271 1219	$ \begin{array}{c} 0 \\ -2 \\ -9 \\ -10 \\ -10 \\ -10 \\ -6 \\ -11 \\ -9 \\ -4 \\ -12 \\ -1 \\ -3 \\ 2 \\ -3 \\ 0 \\ T = 333.15 \text{ K} \end{array} $	$\begin{array}{c} 0\\ 0.4\\ 1.2\\ 1.4\\ 1.4\\ 1.4\\ 0.8\\ 1.4\\ 1.2\\ 0.6\\ 1.5\\ 0.1\\ 0.1\\ 0.4\\ -0.2\\ 0.3\\ 0\\ \end{array}$	
$\begin{array}{c} 0 \\ 0.1345 \\ 0.2209 \\ 0.2525 \\ 0.3043 \\ 0.3421 \\ 0.3732 \\ 0.4169 \\ 0.4222 \\ 0.4780 \\ 0.5745 \\ 0.6665 \\ 0.7903 \\ 0.8757 \\ 1 \end{array}$	1712 1670 1641 1626 1610 1595 1583 1573 1570 1552 1508 1475 1427 1388 1331	$\begin{array}{c} 0 \\ -2 \\ -3 \\ -8 \\ -6 \\ -9 \\ -10 \\ -4 \\ -6 \\ -4 \\ -11 \\ -7 \\ -2 \\ -3 \\ 0 \\ \text{Cyclohe:} \end{array}$	$\begin{array}{c} 0\\ 0.3\\ 0.4\\ 1.2\\ 0.9\\ 1.2\\ 1.4\\ 0.6\\ 0.8\\ 0.5\\ 1.3\\ 0.8\\ 0.2\\ 0.3\\ 0\\ \end{array}$ xane (1) + <i>n</i> -Octane	1962 1913 1885 1871 1848 1799 1797 1777 1729 1690 1627 1587 1520 (2)	$ \begin{array}{c} 0 \\ -2 \\ 2 \\ 0 \\ -3 \\ \end{array} $	0 0.3 -0.3 0.0 0.4 0.9 0.5 1.1 0.6 0.8 0.3 0	
0	1280	T = 298.15 K	0	1386	T = 308.15 K	0	
0.1280 0.1586 0.2265 0.3049	1260 1261 1248 1242	5 0 4 0	0.8 0.0 0.6 0.1	1366 1366 1357 1344	-4 0 -1 -2	0.7 0.0 0.1 0.3	

Table III (Communed)	/TD cl	Ē/mp ~1	$10^{-3} (\partial V^{\rm E} / \partial p)_{\rm T} /$	/TD1	E /TDa = 1	$\frac{10^{-3}(\partial V^{\mathbf{E}}/\partial p)_{T}}{2\pi^{3}\pi^{2}(\partial V^{\mathbf{E}}/\partial p)_{T}}$
<i>x</i> ₁	$\kappa_{\rm T}/1{\rm Pa}$	$\kappa_{\rm T}^{-/1\rm Pa}$	cm mol 1Pa	k _T /IFa	^k T ^{-/} 1Fa	
		Cycloh T = 298.15 K	exane (1) + <i>n</i> -Octane	: (2)	T = 308.15 K	
0.3224	1233	-6	0.9	1337	-7	1.0
0.4145	1227	1	-0.1	1330	1	-0.1
0.4828	1214	-1	0.1	1316	-3	0.4
0.5356	1205	-2	0.3	1308	-2	0.3
0.5918	1196	-2	0.3	1300	-1	0.1
0.6722	1184	0	0.0	1287	1	-0.1
0.7522	1175	5	0.7	1277	6	-0.7
0.8558	1153	4	0.0	1256	6	-0.7
0.8981	1148	7	-0.8	1244	3	-0.3
1	1120	0	0	1219	U T 222.16 V	U
_		T = 318.15 K			T = 333.15 K	
0	1504	0	0	1707	0	0
0.1280	1480	-8	1.3	1680	-9	1.5
0.1586	1477	-7	1.0	1676	-8	1.3
0.2265	1469	-5	0.7	1663	-11	1.7
0.3049	1461	-1	0.2	1657	-5	0.7
0.3224	1453	-7	1.0	1648	-11	1.6
0.4145	1443	-2	0.3	1641	-2	0.3
0.4828	1400	2	0.4	1628	-3	0.4
0.5350	1422	3	0.4	1612	2	-0.2
0.5918	1415	0	-1.1	1602	2	-1.0
0.0722	1387	2	-0.3	1580	2	-1.0
0.7522	1373	2 0	-0.3	1558	23	-0.3
1	1331	Ó	-1.1	1520	Ő	0
•	1001	Gualah	overe (1) i n Nerer	a (2)	Ũ	Ŭ
		T = 298.15 K	exane (1) + n -Nonan	e (2)	T = 308.15]	ĸ
0	1177	0	0	1268	0	0
0.1737	1173	3	-0.6	1272	11	-1.8
0.2517	1175	9	-1.5	1266	9	-1.4
0.3396	1175	14	-2.2	1270	16	-2.6
0.3531	1173	13	-2.0	1270	17	-2.7
0.4176	1167	11	-1.6	1261	12	-1.8
0.5037	1161	9	-1.3	1257	12	-1.7
0.5250	1161	11	-1.5	1256	12	-1.7
0.5811	1161	14	-2.0	1256	15	-2.1
0.6937	1153	13	-1./	1250	14	-1.9
0.7532	1148	11	1.4	1241	9	-1.1
0.8028	114/	14	-1.7	1242	12	-1.0
1	1120	0	-1.0	1219	10	0.7
-	1120	T = 318.15 K		121)	T = 333.15 K	0
0	1366	0	0	1533	0	0
0.1737	1370	10	-1.7	1538	8	-1.5
0.2517	1368	10	-1.7	1538	9	-1.6
0.3396	1368	13	-2.2	1540	13	-2.2
0.3531	1363	9	1.4	1535	9	-1.4
0.4176	1368	16	-2.5	1540	14	-2.2
0.5037	1364	16	-2.3	1535	11	-1.7
0.5250	1364	16	-2.4	1538	15	-2.2
0.5811	1366	21	-2.9	1541	19	-2.7
0.6937	1358	17	-2.2	1538	17	-2.4
0.7532	1354	15	-1.9	1532	12	-1.5
0.8028	1350	13	-1.6			
0.8751	1345	10	-1.5	1525	6	-1.0
1	1331	0	0	1520	0	0

Table III (Continued)

where $(\partial V^{E}/\partial p)_{7}$ is the difference between values for the real and the ideal systems. This difference is the usually defined excess function and is preferred by some authors.¹⁹ Its values are given in Table III.

Nevertheless most authors 20,21 use the excess function as defined by

$$\kappa_{\mathrm{T}}^{\mathrm{E}} = -V^{-1} (\partial V^{\mathrm{E}} / \partial p)_{\mathrm{T}} = \kappa_{\mathrm{T}} - \phi_{1} \kappa_{1\mathrm{T}} - \phi_{2} \kappa_{2\mathrm{T}}$$
(5)

where ϕ_i is the volume fraction

$$\phi_i = x_i V_i / V \tag{6}$$

and V is obtained from eq 2.

It will be noticed that this "excess" function is negative for the cyclohexane + *n*-hexane and cyclohexane + *n*-heptane systems and positive for cyclohexane + *n*-nonane. None of the $\kappa_{\rm T}$ curves on Figures 1–4 coincide with the straight line joining the pure substances compressibility, while from the data in Table III it will be noticed that the cyclohexane + *n*-octane system is ideal. The straight line does not represent an ideal system and the eq 5 definition of $\kappa_{\rm T}^{\rm E}$ does not agree with the usual excess function definition.

The $\kappa_{\rm T}{}^{\rm E}$ values given in Table III for the cyclohexane +

Table IV. Coefficients and Standard Deviation $\sigma(\kappa_T)$ for the Adjustment of κ_T According to Equation 3

	T/	к	A_{0}	A_1	A_{2}	Α,	σ(κ _T / TPa ⁻¹)
			Cycloh	exane (1) +	n-Hexane ((2)	
	298	15	1672.3	-580.4	28.7	-)	2.9
	308	15	1843 7	6621	37.4		1.8
	318	15	2034 7	-774.0	69.8		27
	333	15	2384.1	-987 3	1221		2.8
	555.	15	2304.1	207.5	122.1	(Å)	2.0
	•••		Cyclone	xane(1) +	<i>n</i> -Heptane	(2)	1.0
	298.	15	1439.9	-288.4	48.0	-80.5	1.9
	308.	15	1569.5	-340.1	102.7	-113.6	2.6
	318.	15	1712.4	-328.6	-14.9	-38.6	2.2
	333.	15	1961.8	-335.2	-127.4	21.3	1.9
			Cycloh	exane (1) +	n-Octane (2)	
	298.	15	1280.5	-150.8	64.6	-73.3	2.4
	308.	15	1387.0	-158.8	69.5	77.8	2.2
	318.	15	1503.9	-186.1	144.0	-130.0	2.7
	333.	15	1706.1	-214.7	190.1	-162.1	2.2
			Cyclohe	exane (1) +	n-Nonane (2)	
	298.	15	1177.2	-9.5	-12.1	-35.3	2.1
	308	15	1268.6	18.6	-73.6	6.4	2.5
	318	15	1366.4	6 7	59	-47 9	1.8
	333.	15	1533.4	21.8	-11.7	-24.0	2.2
	1600 r		··	······			·····
			1	33	33.15 K		
	ł		<u> </u>	o		<u> </u>	
							•
	1400						-
a,	ļ						
ΞL							
ž	•			30	08.15 K		
•					00-0		aa
	1200			20	98 15 K		_
	ł						.
	ļ	<u></u>	02		0.6		8
		,	0.2	0.4	0.0	U.	

Figure 4. Isothermal compressibility κ_T against cyclohexane mole fraction x_1 for the cyclohexane + *n*-nonane system.

n-hexane, cyclohexane + *n*-heptane, and cyclohexane +n-nonane systems were fitted to a polynomial of the type

$$\kappa_{\rm T}^{\rm E} = x_1 x_2 \{ B_0 + (2x_1 - 1)B_1 \}$$
(7)

whose coefficients and standard deviations are given in Table V. No fit has been sought for the cyclohexane + n-octane system since it is an ideal one.

The κ_{T}^{E} values obtained from eq 7 were plotted against the cyclohexane mole fraction on Figure 5. Here we notice that the κ_{T}^{E} numerical value changes its sign between the cyclohexane + n-heptane and cyclohexane + n-nonane systems. This change also occurs in the benzene + n-alkane sequence going from a negative value for benzene + n-hexane to a somewhat larger than zero value for the benzene + n-heptane system. On both series V^{E} is always positive.

One observes on Figure 5 that the absolute value of $\kappa_{\rm T}^{\rm E}$ shows a maximum at $x_1 = 0.5$. The absolute value of κ_T^E for the cyclohexane + n-hexane system increases with temperature. A corresponding change for the cyclohexane + n-heptane and cyclohexane + n-nonane systems, if it exists, is within the experimental error. For the cyclohexane + n-heptane system, κ_{T}^{E} in the maximum region amounts to less than 1% of the mixture κ_T value.

Table V. Coefficients and Standard Deviation $\sigma(\kappa_T^E)$ for the Adjustment of κ_T^E According to Equation 7

	<u></u>	<u></u>	$\sigma(\kappa_T^E/TPa^{-1})$
	20		•(•1 / •••)
	Cyclohexane (1) +	- <i>n</i> -Hexane (2)
298.15	-124.6	1.3	2.8
308.15	-152.0	-0.1	1.9
333.15	-291.5	-26.0	3.2
000110	Cuelebourne (1)	u Hantana (2	
298.15	-185	<i>n</i> -neptane (2	21
308.15	-28.0	29.8	2.8
318.15	-27.2	1.7	2.3
333.15	-21.1	-22.5	2.0
	Cyclohexane (1) +	- <i>n</i> -Nonane (2)
298.15	54.0	28.1	2.4
308.15	62.7	9.4	2.9
318.15	67.8	26.1	1.9
333.15	58.5	10.1	2.5
	<u> </u>		
		ł	1
20		_	
-0	_	318.15	*
	a. In Maria	33	
	300 298.15		· 15 7
0			
Ŭ	318.15 K	298.15 K	
	108 15 K		333.15
			////
-20			
<u>-20</u>	$ \left[\right] $		
E.		298.15 K	///
5			11
щн ж			
-40		308.15 K	/ 7
		~	
		318.15 K	j
		/	
-60		/	
	``\		
		333.15 K	
-80	-		
	0 0.2 0.4	0.6 X	0.8 1

Figure 5. Plot of κ_T^E against cyclohexane mole fraction x_1 : (---) cyclohexane + n-nonane; (---) cyclohexane + n-heptane; (----) cyclohexane + n-hexane.

Glossary

- A1, A2, coefficients in representation of isothermal com-..., A_i pressibility by eq 3
- B_{0}, B_{1} coefficients in representation of excess compressibility by eq 7
- HE molar excess enthalpy, J-mol⁻¹
- Ρ pressure, TPa⁻¹
- Т temperature, K
- v molar volume, cm3·mol-1
- VE molar excess volume, cm3-mol-1
- mole fraction of component i X

Greek Letters

ϕ_i	volume fraction
	inothermal compres

- isothermal compressibility, TPa-1 $\kappa_{T} = \kappa_{T} \epsilon$
- excess compressibility, TPa-1
- density, g·cm⁻³ ρ

standard deviation σ

Literature Cited

- M. Diaz Peña, G. Tardajos, C. Menduiña, and R. L. Arenosa, *J. Chem. Thermodyn.*, **11**, 67 (1979).
 M. Diaz Peña and C. Menduiña, *J. Chem. Thermodyn.*, **6**, 387 (1974).
 M. Diaz Peña and C. Menduiña, *J. Chem. Thermodyn.*, **6**, 097 (1974).

- (4) M. Diaz Peña and J. Nuñez Delgado, An. Quim., 70, 678 (1974).
 (5) M. Diaz Peña and J. Nuñez Delgado, J. Chem. Thermodyn., 7, 201
- (1975)(6) R. L. Arenosa, C. Menduiña, G. Tardajos, and M. Diaz Peña, J. Chem.
- Thermodyn., 11, 159 (1979). (7) R. G. Sánchez-Pajares and J. Núñez Delgado, J. Chem. Thermodyn.,
- 11, 815 (1979). (8) M. Diaz Peña and M. L. McGlashan, Trans, Faraday Soc., 57, 1511 (1961).
- M. Diaz Peña and B. Cavero, An. Real Soc. Esp. Fis. Quim., 5, 357 (9) (1964).
- (10) M. Diaz Peña and G. Tardajos, J. Chem. Thermodyn., 10, 19 (1978).

- (11) F. D. Rossini et al., "Selected Values of Physical Thermodynamic Properties of Hydrocarbons and Related Compounds", API Research Project 44, Carnegie Press, Pittsburgh, PA, 1953.
- (12) J. R. Goates, J. B. Ott, and J. F. Moellmer, J. Chem. Thermodyn., 9,

- (12) 6. In Codds, C. D. Cit, and C. T. Infommer, J. Chem., *Hermicoly*, *1*, 9, 249 (1977).
 (13) J. Gomez-Ibañez and C. T. Liu, *J. Phys. Chem.*, *65*, 2148 (1961).
 (14) T. M. Letcher, *J. Chem. Thermodyn.*, *7*, 205 (1975).
 (15) G. A. Holder and E. Whalley, *Trans. Faraday Soc.*, *56*, 2095 (1962).
 (16) K. S. Rogers, R. Burkat, and A. J. Richard, *Can. J. Chem.*, *51*, 1183 (1975). (1973)
- (17) M. B. Ewing, K. N. Marsh, and R. H. Stokes, J. Chem. Thermodyn., 4,
- 637 (1972 (18) O. Kiyohara, C. J. Halpin, and G. C. Benson, J. Chem. Thermodyn., 10,
- 721 (1978). (19) I. Prigogine, "The Molecular Theory of Solutions", North-Holland Pub-
- R. A. Orwoll and P. J. Flory, J. Am. Chem. Soc., 87, 1833 (1965).
- (21) M. B. Ewing and K. N. Marsh, J. Chem. Thermodyn., 9, 371 (1977).

Received for review March 28, 1979. Accepted November 2, 1979.

Vapor–Liquid Equilibrium in Binary Mixtures of Carbon Dioxide +**Diphenylmethane and Carbon Dioxide + 1-Methylnaphthalene**

Herbert M. Sebastian, Govind D. Nageshwar, Ho-Mu Lin, and Kwang-Chu Chao*

School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907

Vapor-liquid equilibrium data for binary mixtures of carbon dioxide with diphenylmethane and with 1-methylnaphthalene are determined at temperatures between 189 and 430 °C and at pressures between 20 and 50 atm.

Introduction

Carbon dioxide is an important nonhydrocarbon component in petroleum reservoir fluids and natural gases and is encountered in coal conversion processes. Phase equilibrium data on carbon dioxide mixtures are, therefore, of considerable industrial and engineering interest. We (5) recently reported vapor-liquid equilibrium data in binary mixtures of carbon dioxide + n-decane and carbon dioxide + n-hexadecane and reviewed the literature on carbon dioxide + heavy paraffins. In this work we report the compositions of saturated equilibrium liquid and vapor phases for binary mixtures of carbon dioxide + diphenylmethane and carbon dioxide + 1-methylnaphthalene at temperatures between 189 and 430 °C and at pressures between 20 and 50 atm.

No phase equilibrium data have been previously reported for these two binary systems at the temperature and pressures of this work. Tremper and Prausnitz (9) measured low-pressure solubilities up to 200 °C. A few other studies have been reported on mixtures of CO_2 with aromatic hydrocarbons but all were limited to temperatures below those of this work. Ng and Robinson (3) reported data for carbon dioxide + toluene mixtures at 38-204 °C and at pressures up to 151 atm. Ohgaki and Katayama (4) and Wan and Dodge (10) determined solubility of CO₂ in benzene at temperatures up to 60 °C. Luks and Kohn and co-workers (2, 8, 11) studied binary mixtures of carbon dioxide + 2-methylnaphthalene and carbon dioxide + butylbenzene at low temperatures and ternary mixtures of carbon dioxide + n-decane + 2-methylnaphthalene and carbon dioxide

Equilibrium Data						
p, atm	x _{CD}	УCD	K _{CD}	KD	_	
		189.6 °C				
18.90	0.0572	0.9886	17.28	0.0121		
19.84	0.0594	0.9892	16.65	0.0115		
29.69	0.0876	0.9921	11.33	0.00866		
40.1	0.1163	0.9933	8.541	0.00758		
49.6	0.1429	0.9938	6.955	0.00723		
		269.4 °C				
20.17	0.0512	0.9329	18.22	0.0707		
30.01	0.0777	0.9505	12.23	0.0537		
39.8	0.1017	0.9582	9.422	0.0465		
50.3	0.1283	0.9634	7.509	0.0420		
		350.2 °C				
19.17	0.0394	0.7127	18.09	0.2991		
30.67	0.0684	0.7999	11.69	0.2148		
40.0	0.0925	0.8338	9.014	0.1831		
49.4	0.1155	0.8567	7.417	0.1621		
		430.6 °C				
29.45	0.0505	0.4303	8.521	0.6000		
40.2	0.0818	0.5312	6.494	0.5106		
50.0	0.1127	0.5915	5.249	0.4604		

Table I. Carbon Dioxide + Diphenylmethane Vapor-Liquid

+ butylbenzene + 2-methylnaphthalene. Francis (1) measured solubilities of CO₂ in aromatic compounds at 25 °C.

Experimental Section

The apparatus and procedure used in this study have been described previously by Simnick et al. (6). A minor change has been made in the apparatus with the addition of a Heise gauge (Model CMM) which measures pressures below 34 atm to an increased accuracy of ±0.03 atm.

The apparatus is of the flow type to minimize thermal decomposition of the hydrocarbons at high temperatures. The